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Abstract

The global stability on the dynamical behavior of the Leslie-Gower predator-prey
system with delayed prey specific growth is analyzed by constructing the corresponding
Lyapunov functional. Three different types of famous Holling’s functional responses are
considered in the present study. The sufficient conditions for the global stability analysis
of the unique positive equilibrium point are derived accordingly. A numerical example
is presented to illustrate the effect of different Holling-Type functional responses on the
global stability of the Leislie-Gower predator-prey model.
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1 Introduction

Predator-prey models have been studied by many authors for a long time. Most of studies
are interested in the global stability of the unique positive equilibrium point of the predator-
prey systems with or without delay. Popular methods in the global stability of predator-prey
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system without time delay can be categorized into the four different types: to construct a
Lyapunov function [1, 2, 6, 7, 8] to employ the Dulac Criterion plus the Poincaré-Bendixson
Theorem [10] the limit cycle stability analysis [10, 11, 13| and the comparison method [11, 13].
But a more realistic model should include some of the past states of the population system:;
that is, a real system should be modeled with time delay. As discussed in the references
[14, 15, 17|, the global stability analysis for the system with time delay relied mainly on
constructing a corresponding Lyapunov functional.

The global stability for the Lotka-Volterra model has been extensively addressed, e.g. see
[24]. As one of the famous model in describing the dynamic behavior of predator-prey system,
the carrying capacity of the predator population in the Lotka-Volterra model is independent
of the prey population. Actually, the carrying capacity of the predator population should
depend on the prey population which results into the so-called Leslie-Gower model which is
a Kolmogorov-Type model and is of the form:

i) = ofo) |r (1= 52 )| - ptomo (1)

i =y [5—5%] (1.2

where z(t) and y(¢) denote the density of prey and predator, respectively; r, 5 and § are
positive constants; and K is the environment carrying capacity. Also, p(z) denotes the
functional response of the predator. This system has an unique positive equilibrium point.
Various modifications of Leslie-Gower models and associated global stability problem can be
referred to [12] and the references cited therein.

There are many different kinds of the predator-prey models with time delay in the lit-
erature, for more details we can refer to [3], [5] and [20]. The discussion on the effect of
time delay to the dynamic behavior of the system (1.1) and (1.2) are mainly focus on the
Leslie-Gower terms in (1.2). Alternatively, we are concerned with the effect of the single
time delay 7 on the logistic term of the prey, x(t — 7)/K, in (1.1) which was first proposed
and discussed by [18]. The time delay appearing in the intra-specific interaction term of
the prey equation represents a delayed prey growth effect. The stability, bifurcation, and
periodic solutions about similar predator-prey systems are extensively studied in literature,
e.g., [4,9, 16, 21, 22, 23, 25, 26].

In present study, we establish global stability analysis of Leslie-Gower predator-prey mod-
els with time delay. Three different functional responses of the predator, i.e., p(z) term in
(1.1), are considered by constructing their corresponding Lyapunov functionals according to
the Korobeinikov approach for the non-delay model[13]. This paper is organized as follows.
In section 2, we introduce some useful definitions and theorems and the bound of the dynam-
ical behavior of the Leslie-Gower predator-prey system with a single delay. In section 3, we
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analyze the global stability by constructing the Lyapunov functional to Holling’s type I, II
and III functional responses . Finally, we illustrate our results by some numerical examples.

2 The Model with Time Delay

2.1 Preliminaries

Define C = C([—7,0],R™) is the Banach space of continuous functions mapping the interval
[—7,0] into R™ with the topology of uniform convergence; i.e., for ¢ € C, the norm of ¢ is
defined as [|¢|| = sup |¢(0)], where |-| is any norm in R"”. Define x, € C as x,(6) = x(t+6),
0c[—7,0]
0 € [—7,0]. Consider the following general nonlinear autonomous system of delay differential
equation
x(t) = f(x), (2.1)

where f : 2 — R” and 2 is a subset of C. In this paper, we need the following definitions,
theorems and lemmas.

Definition 2.1. [15]

1. The solution x = 0 of the system (2.1) is said to be stable if, for any 0 € R, ¢ > 0, there
is a § = d(e,0) such that ¢ € B(0,6) implies x;(c, ¢) € B(0,¢) for t > 0. Otherwise,
we say x = 0 is unstable.

2. The solution x = 0 of the system (2.1) is said to be asymptotically stable if it is stable
and there is a by = b(0) > 0 such that ¢ € B(0, by) implies x(o, ¢)(t) — 0 as t — 0.

3. The solution x = 0 of the system (2.1) is said to be uniformly stable if the number ¢
in the definition of stable is independent of o.

4. The solution x = 0 of the system (2.1) is said to be uniformly asymptotically stable if
it is uniformly stable and there is a by > 0 such that, for every n > 0, there is a ty(n)
such that ¢ € B(0, by) implies x;(c, ¢) € B(0,n) for t > o + to(n), for every o € R.

Definition 2.2. [23] System (2.1) is said to be uniformly persistent if there exists a compact
region D C int Ri such that every solution of the system (2.1) eventually enters and remains
in the region D.
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Lemma 2.3. [15] Let u(-) and w(-) be nonnegative continuous scalar functions such that
u(0) = w(0) = 0; w(s) > 0 for s > 0, lim u(s) = 400 and that V : C — R is continuous

and satisfies '
V(9) Z u(|¢(0)]), V(¢) < —w(|o(0)]).

Then x = 0 is globally asymptotically stable. That is, every solution of the system (2.1)
approaches x = 0 as t — +00.

2.2 The Leslie-Gower System

Consider the Leslie-Gower predator-prey system with time delay 7 modeled by

B(t) = a(t) T(_x(t;))_p(m)

(2.2)
o y(t)
i = oo - 523]
with the initial conditions
z(0) =¢(0) >0, 0 € [-T1,0], ¢ € C(]-7,0],R), (2.3)

z(0) > 0, y(0) >0,

where r, K, ¢, (3, 6 and 7 are positive constants, x and y denote the densities of prey and
predator population, respectively. The biological population is to be discussed and we need
only to consider the first quadrant in zy-plane. The following consistent condition with (2.2)
is assumed:
(A) p e C'(]0,00),[0,00)); p(0) = 0 and p'(x) > 0 for all z > 0.

The popular functional responses of the predator, p(x), in the literature are p(x) = cx
p(x) = cffz , and p(z) = c5 12 of the Holling-type I, II, and III, respectively, for some
positive constant c. And it is evident that p(z) < cmax{z, :L’2} for these three responses.

Lemma 2.4. Every solution of the system (2.2) with the initial conditions (2.3) ezists in the
interval [0, 00) and remains positive for all t > 0.

proof. It is true because
0 = e[ (o) 0] )

o - v { -1 )

and z(0) > 0 and y(0) > 0. O
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Lemma 2.5. Let (x(t),y(t)) denote the solution of (2.2) with the initial conditions (2.3),
then
O<z(t) <M, 0<y(t)<L (2.4)

eventually for all large t, where

M = KT, (2.5)
§
L = BM. (2.6)

proof. Now, we want to show that there exists a 7" > 0 such that z(t) < M for ¢t > T. By
Lemma 2.4, we know that solutions of the system (2.2) with the initial conditions (2.3) are
positive, hence by assumption (A), and (2.2) becomes

x(t—T)

i) = rat0) (1= ) et

< op (1220, o

Taking M* = K(1 4 k;) for 0 < k; < '™ — 1. The situation of z(t) with respect to M* is
categorized into two possible cases.

Case 1: Suppose z(t) is not oscillatory about M*. That is, there exists a T, > 0 such that
either
x(t) < M* for t > 1T, (2.8)

or
x(t) > M* for t > T. (2.9)

If (2.8) holds, then for t > T =Ty,
x(t) <M =K1 +k)<Ke™ =M.
Suppose (2.9) holds, (2.7) implies that for ¢t > Ty + 7

)

z(t) < ra(t) {1— e

< —kyra(t).

It follows that

~—

/t i(s) ds</t (—hur) ds = —kyr(t — Ty — 7).

Totr 2(8) To+7
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then 0 < 2(t) < x(Ty + 7) e F7¢=To=7) 0 as t — oo. That is, lim z(t) =0 by

the Squeeze Theorem. It contradicts to (2.9). Therefore, there exist a 77 > Ty such
that =(77) < M. If z(t) < M for all t > T, and then there exist a 7" > 0 such that
x(t) < M forallt > T.

Case 2: Suppose z(t) is oscillatory about M*, then there must exist a 7o > T} such that
T5 be the first time which z(7) > M*. Therefore, there exists a T3 > T5 such that
T3 be the first time which z(73) < M* by above discussion. By above, we know that
x(Th) < M*, x(Ty) > M* and z(T3) < M* where T} < Ty < T3. Then, by the
Intermediate Value Theorem, there exists T, and T such that

ZZ'(T4) = M*, T1 < T4 < TQ,
ZZ'(T5) = M*, T2 < T5 < T3

and x(t) > M* for T, < t < T5. Hence there is a Tg € (T}, T5) such that z(7g) is a
local maximum and (2.7), we have

0 =i(Ty) < x(Ts) {T (1 - :C(LK_T))}

and
x(Tg —7) < K.

Integrating both sides of (2.7) on the interval [Ty — 7, Tg], we have
T5 s TG —
lnlﬂ]:/ @dsg/ lT(I_M)} ds < 17
IL‘(T@ - T) Ts—T IL‘(S) Te—T1 K

x(Tg) <x(Teg—7) ™ < Ke'™ = M.

and

Applying the same operation on the amplitude of the trajectory x(t), we can find a
sequences of Ty such that every x(7%) is a local maximum of z(¢), and its amplitude is
less then M. Hence we can conclude that there exists a 7" > 0 such that

x(t) <M fort>T. (2.10)

Now, we want to show that y(¢) is bounded above by L eventually for all large ¢. By (2.10),
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it follows that for t > T

i = oo fo- 523
< olt) [ g0t0)
= oy(t) [1 - %] .
B
Therefore, y(t) < IM/B = L for t > T. The proof is complete. O

Lemma 2.6. Suppose that the system (2.2) satisfies
r—c max{l, M} L >0, (2.11)

where L defined by (2.6). Then the system (2.2) is uniformly persistent. That is, there exists
m, | and T* > 0 such that m < x(t) < M and | <y(t) <L fort >T* i=1,2.

proof. By Lemma 2.5, equation (2.2) follows that for t > T + 7

(1) > 2(t) {r (1 - %) - p(f(%))L] > 2(t) {r (1 - %) Cemad{l, M} L. (212)

Integrating both sides of (2.12) on [t — 7, ], where ¢ > T + 7, then we have

z(t) > a(t—7) o(r(1=3)—c max{1,M} L)r

That is,
{L'(t _ 7_) < {L'(t) 6—(7"(1—%)—0 max{1,M} L)’T. (213)

From (2.2) that for t > T + 7

z(t— 1)

i) = a0 (1227 = platono

> x(t) [r —cmax{l,M} L — %e’(T(I’M/K)’C max{1,M} L)r :c(t)]

= (r—cmax{1l, M} L) z(t) [1 — x(t) ] )

K(r—c maj{{l,M} L) e(r(l—%)—c max{1,M} L)t

It follows that

lim inf l’(t) > KT — CmaX{la M}L e(r—r%—cmax{LM}L)T

t—o0 T

=m
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and m > 0. Hence x(t) > m — e; = m > 0 with a positive number ¢y, for large ¢. Next,

i = 90 |5 2yt

it implies

Therefore, y(t) > | — g5 = 1 > 0 with a positive number 5, for large ¢. Let
D={(z,y)[m<z<M I<y<L}

be a bounded compact region in Ri that has positive distance from coordinate hyperplanes.
Hence we obtain that there exists a T™ > 0 such that if ¢ > T™, then every positive solution
of the system (2.2) with the initial conditions (2.3) eventually enters and remains in the
region D; that is, the system (2.2) is uniformly persistent. O

3 The Lyapunov Functional

The equilibrium point E* = (z*, y*) of the Leslie-Gower system

o(t) = w(t) |r (1 _ "E(t[; T)) _ plz)

o y(t)
it = () 5—6%}

satisfies

' (1 - l“_) P D)
or" = By*

or equivalently, is the solution of the systems
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Once the equilibrium point E* is found, we can obtain an perturbed system to construct
the Lyapunov functional. Now three different types of Holling’s functional responses are
considered:

Type I: p(x) =cx,

Type II: p(z) = ¢,

Type III: p(z) = c%.

The Lyapunov functionals for each Holling’s functional responses are derived based upon
the formula proposed by Korobeinikov [13] for non-delay model. Although the Tsai’s paper
[22] presents a similar result, ours provides larger delay bound for asymptotically stability
which will be demonstrated by various examples in next section.

3.1 Holling-Type I Functional Response
When p(z) = cx, the equilibrium point E*(x*,y*) is then given by

. Kpr
v - pr+0Kc’
. OKr
Y C Br+6Kc

Theorem 3.1. Let p(z) = ¢ x be the functional response of Holling-Type I and the time
delay T satisfies

r—cmax{l,M} L > 0, (3.1)
K
Mt < 25—, (3.2)
re
r c 1
—+— | M - .
(5K+2ﬁ) T <5 (3.3)
B* —4AC < 0, (3.4)
where
r rMer 2 M
A= — — — _
0K 20K K2’ (3:5)
c 1 c 1
1 rMer
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with M and m defined in Lemmas 2.5 and 2.6, respectively, then the unique positive equilib-
rium E* of the system (2.2) is globally asymptotically stable.

proof. Define z(t) = (21(t), z2(t)) by

A =107 = 7y<t>y: v
From (2.2), the perturbed system is given by
A1) = [1+2(0) {—cy%(t) Al T)} , (3.5)
v
ket t) —In[l t t) —In[l t
(o = O 20 et =l 0]} 510)
then from (3.8) and (3.9), we have
V(=(t) = {—% + m} 21(8)z(t) — ng(t) - ’“Zl(t)gf “7 3

Suppose the inequality 7 — ¢ max{1, M} L > 0 hold, then by Lemma 2.6, there exists a
T* > 0 such that m < z*[1 4 z(t)] < M for t > T*. The equation (3.11) implies that

Vi(=(0) < (—5 " m) S 0)za(t) — -3 - UAEET (5 )
and since
T2 (t)z1(t — 1)
0K
= —%[((t) [zl(t) - /t_T z‘l(s)ds]
= _5%2%(75) + 5LK th[l + 21(8)] |:—Cy*21(t)22(5) - Tx*21(t);(s — T)} ds
< A0 + e [ a0 | Ge G0+ B+ F 0 + - )] @

r rMer M1\ rMc [t r2M 1
L ¢ ds+ 22 [ 26— 1)a
( oK T opr T 25K2) al) + 555 HZZ(S) st 25K2/ #i(s = 7)ds

t—1

then we have
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. & 1 r rMer  r?MT
< o - _ 2
He0) < (<54 oy ) a0+ (—5+ i * i) 20
M [t 1, rMc 9
+25K2 t,TZI(S_T)dS_Mzz(t)JFZﬁK - 25(s)ds. (3.13)
Let u
rMc
— QBK/tT/S 22 (v d7d3+25K2/ /Z1 — 7)dvds (3.14)
and 20
Mt )
Vo) = s | Ao (3.15)
then
. r?’Mr M [t
Be) = -0 - g [ A -0
rMer rMc [t
and 21 20
: Mt Mt
Va(att)) = T 20— A2 ), (3.17)
Now we define a Lyapunov functional V' (z(t)) as
V(z(t)) = Vi(z(8)) + Va(2(1)) + Va(=(1)), (3.18)

then from (3.13), (3.16) and (3.17) it follows that for ¢t > T*

Vew) < (- B - T ) A0+ (-5 + s ) a0

- (% - 7’2]‘;;;) (). (3.19)

By (3.19), there is ¢ > 0 such that

V(2(1) < —e(2i(t) + 25(2)) (3-20)

if and only if A > 0, C > 0 and B? — 4AC < 0 where A and C are defined by (3.5) and

(3.7), and

c 1
S A (e )
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for all possible trajectory (z*[1+ 21 (t)], y*[1 4+ 22(¢)]). Since m < a*[1+2(t)] < M fort > T*,
ie.,

c n 1 < _C 1 < _C n 1
M — ﬁ [l+z0)] — 6 m

@

and by define

B {‘ ¢ 1 ¢ 1 }
=max<{ |-+ —|, |-+ —
g g m
Then the condition for V(z(t)) < 0 becomes
K
Mt < Zﬁ—
re
28K
M _r
4 OKc+ 2067’

B? —4AC < 0,

where A, B and C' are given by equations (3.5)-(3.7).
Define w(s) = es?, then w is nonnegative continuous on [0, 00), w(0) = 0 and w(s) > 0
for s > 0. It follows that for ¢t > T

V(=(1) < —el2i(t) + 25(8)] = —w(|=(t)]).

Now, we want to find a function w such that V(z(¢)) > u(]z(¢)|). From (3.10), (3.14) and
(3.15) that

V(z(t)) > Vi(z(t)) = (t) — In[1 + 21 (¢)] + 22(t) — In[1 + 29(¢)]} . (3.21)
By the Taylor Theorem, we have
Z(t) — In[1 + 2(t)] = m (3.22)

where 0;(t) € (0, z(t)) or (2;(t),0) for i = 1,2. Consider the all the possible cases for 6;:
L. 0<6;(t) < z(t), fori =1,2,
=1 < z(t) <6;(t) <0, fori=1,2,
3. 0<bi(t) <z(t), —1<z(t)<by(t) <0,
( (

4. —1< 2z t) < 01 t) , 0< 02(75) < Zg(t),
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we can find a parameter N defined by
~ 1 7\ 2 1 y* 2
N = mi — =
mm{2ﬁy* (M) ’Zﬁy*(L) }

V((t) = Nz()].

such that

Define u(s) = Ns?, then u is nonnegative continuous on [0, c0) with u(0) = 0, u(s) > 0 for
s >0 and lim u(s) = +o00. Thus we have

V(z(t)) > u(]z(t)|) for t > T*.

Hence the equilibrium point E* of the system (2.2) is globally asymptotically stable by
Lemma 2.3. 0

Remark 1. In the proof of Theorem 3.1, the corresponding Lyapunov functional (3.18) for
7 = 0 becomes

1 |z x*
— —1+In—+
By* | z* x
which the same as the Lyapunov functional by Korobeinikov [13] with an extra constant —2
and multiplicative constant 1/5y* such that V(z*, y*) = 0.

4 14mL (3.23)
y v

Vi(z,y)

3.2 Holling-Type II Functional Response

When p(x) = c17, the equilibrium point E*(2*,y*) is obtained by solving

1 dc
*2 . __1 *_1:
x +K(F'+rﬁ )x 0,
., 0

Y= =z’

g

Theorem 3.2. Let p(z) = ¢ T, be the functional response of Holling-Type II and the time
delay T satisfies

r—cmax{l,M} L > 0, (3.24)

2
M T < 2K—ﬁ,(3.25)
1+m rc
r c 3r* 4+ 5 Kec 1 1 1
— + — Mt + — - = 2
(5K+2ﬁ(1+x*)(1+m)> Tt (1+m (1+x*)(1+M)) <5 62
B? —4AC < 0, (3.27)
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where

(K —rMrT) c B c _ rMer (32" +5)
A= SK? i B(l+z)1+ M) B(l+m) 28K(1+m)(1+z*) (3:28)
c 1 c 1
B:maX{—m+M','—m+E'}, (329)
oLt rMer (3.30)

M 23K(1+m)

with M and m defined in Lemmas 2.5 and 2.6, respectively, then the unique positive equilib-
rium E* of the system (2.2) is globally asymptotically stable.

proof. Define z(t) = (21(t), z2(t)) by

I U s
z1(t) = o 2(t) "
From (2.2), the perturbed system is given by
, B cy*z(t) B cy*z(t) B cy*za(t)
alt) = [L+=()] [1 Tl a0 Ittt a0) 1ro0+al)
e L[(; - T>] | (3.31)
S
Let
Vi(a(t) = {z:1(t) — In[1 + zl(t)]}ﬁz*{zg(t) —In[1 + ZQ(t)]}’ (3.33)
then from (3.31) and (3.32), we have
ey = 5 (TE )
_ ¢ 1 Nzt c23(t)
- (st tEr ) 050 s
B c23(t) B 23(t) T2 (t)z1(t — 1)
Bl +a*) (L+x* 1+ 2z(t)]) a1+ z(t)] 0K

c 1
= (_ﬁ (14 2*[1+ z(t))) + x*[1 + z1(¢)]

) 2020

¢ ¢ 2 1 2 7’21<t) Zl(t—T)
+<ﬁ(1+m) _ﬁ(1+x*)(1+M))Zl<t) — a2 - ST _
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Suppose the inequality 7 — ¢ max{1, M} L > 0 hold, then by Lemma 2.6, there exists a
T* > 0 such that m < z*[1 + 2 (t)] < M for t > T*. Since

Crat)alt-1) _ ra) [Zl(t)_ /;T'él(s) ds}

K oK
= —5—Kzf(t) 7 t_T[l + 21(s)]
[ cyzi(t)als) cy*z1(t)z1(s) _aytz(t)z(s)
L+ [l+2(s)] (A+a)(A+a[1+2(s)]) 14+x*1+ z(s)]
_rata(t)a(s - 7)} s
K
< AWt [ el ae)

{ ( c6 N cb ) 2 (t) + 2 (s)
BA+a 1+ z(s)])  BA+z*)(1+z*[l+2(s)]) 2
N cd A2 +25(s) | A1)+ (s - 7')} s
B(1+ a1+ z1(s)]) 2 K 2
r rMer rMer M7\
(‘57( TR Em) TR m) 25[(2) ()

IN

*ox (ﬁ(lim) e +m>) / A(s)ds

rMc by r’M !
e ds + —— 2(s — 7)d
+2Kﬁ(1+m) /thQ(s) S+25K2 tiTzl(s T)ds

then we have

. C 1
Vo) < (st T

c c r rMer
i (g@ Tm)  BUra) I+ M) 0K T KA(L+m)
rMer Mt
SKB(L+a) 1 +m) 25K2) #i(t)

1, rMe 1 1 by
_M,Zé(t)_'_ 3K <1+m+ (1+x*)(1+m)) /t_Tzl(s)ds
rMec by M [t
_— — . 34
+2Kﬁ(1+m) /15_7,22(3)ds—|—25[(2 /t_Tzl(s T)ds (3.34)
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Let

rMc 1 1
Valalt)) = 2K <1+mjL 1+:c)(1+m)/tT/szl dyds

rMec
2Kﬁl+m /tT/SzQ dfyd3+25K2/ /zl — 7)dyds (3.35)

and
Vitett) = o [ s, (3.6)
then
Val=(0) |
- ;%; (1 —im Ty x*)l(l n m)) Alt) - ;\(4; (1 —im T x*)l(l T m)) /” A0y
b ) - i [ e
+ ;;‘[g 20— 1) — % /t j 2(y— 7)dy. (3.37)
and
Vale(t) = T 2(t) - LT 20— ), (339
Now we define a Lyapunov functional V(2(1)) as
V(a(8)) = V2(0) + Vaelt) + Vo (a(0), (330

then from (3.34), (3.37) and (3.38) it follows that for ¢ > T*

V(#(1) = V(1)) + Va(z(t)) + Va(2(1))

r(K —rMr) c c rMer(3z* +5) 5
s - ( SK? Bl+z9)(1+M) B+m) 2KB(1+z%)(1+ m)) ()
+ (— c + L ) 2 (8)2(t)
B+ a1+ z0)]) a1+ 20)]) 7
1 rMer :
- (M T 2KB(1+ m)) () (3:40)
By (3.40), there is ¢ > 0 such that
V(z(t) < —e(2(t) + 23 (t)) (3.41)
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if and only if A > 0, C > 0 and B2 — 4AC < 0 where A and C' are defined by (3.28) and

(3.30), and
c 1

Bt +a0)) 70+ a0)

for all possible trajectory (z*[1+ 21 (t)], y*[1 4+ 22(¢)]). Since m < a*[1+2(t)] < M fort > T*,
ie.,

B, = —

c 1 c 1 c 1

Bt m) M Bt elra@)  rlta@ - Ba+M) m
and by define

B = -
e * |-
Then the condition for V(z(t)) < 0 becomes
2
K
T < 2 ﬁx’
1+m re

T c 3x*+5 v Kc 1 1 1
(5—K+%(1+x*)(l+m)) T+E(1+m_(1+x*)(1+M)) Sy
B 0

where A, B and C are given by (3.28)-(3.30).
Define w(s) = es?, then w is nonnegative continuous on [0, 00), w(0) = 0 and w(s) > 0
for s > 0. It follows that for ¢t > T

V(2(t) < —el[2(t) + 25 ()] = —w(]=(1))).

To find a function u such that V(z(t)) > wu(|z(t)]), since the following relationship is still
hold for Holling’s Type II

V(z(t) 2 Vi(=(1) =

() = [l 4 2 (8)] + 25(¢) = In[1 + 25()]} .

and then by the same argument proposed in the proof of Theorem 3.1, we can establish that
this is a nonnegative continuous function u defined on [0, 00) with «(0) = 0, u(s) > 0 for
s> 0and lim u(s) = +oo and

V(z(t)) > u(|z(t)|) for t > T*.

Hence the equilibrium point E* of the system (2.2) is globally asymptotically stable by
Lemma 2.3. 0
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3.3 Holling-Type III Functional Response

When p(z) = c%, the equilibrium point E*(z*,y*) is obtained by solving

x*3+K<§—1)x*2+x*—K:0,
g3

Theorem 3.3. Let p(z) = ¢ Hﬂig be the functional response of Holling-Type III and the time
delay T satisfies

r—cmax{l, M} L > 0, (3.42)
M?*(M + 2z* K
&7— 2_57 (3.43)

1 +m? re

r ¢ (5+32?) (M + 2z*) + 2z* v
(57( 26 B +a?)(1+m?) ) !

KC (M +2z* M + z* 20 1 3.44
" <1+m2 +(1+$*)(1+m2)_(1+:c*2)(1+M2)) Sy (3.44)
B? —4AC < 0, (3.45)
where
A" L 2cx” (M +227) (M + x*)
TOK B0+ a1+ M2 Bl+m?) B+a)(1+md)
3rMe(M + 2x*)T rMe(M + 3z*)T 2 Mt 546
T 2KB( ) KB+ a1+ m?) K (3.46)
cM 1 cm 1

B=max{ |50 51| | el 347

1 rMe(M + 22%)7
C=3- 2K3(1 +m?) (3.48)

where M and m defined in Lemmas 2.5 and 2.6, then the unique positive equilibrium E* of
the system (2.2) is globally asymptotically stable.

proof. Define z(t) = (z1(t), 22(t)) by
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From (2.2), the perturbed system is given by

, _ cx*y*z (t) B 2cx*y* 2 (1) cxry* 23 (t)
40 = W0 [ T (e amE T o
cxry*23(t) cx*y* zo(t) cx*y*z1 () zo(t)

Q42?422+ 20P) 1+21+z0]2 1+ 271+ % ()]

ra*zi(t — 1)
rat=n), o
a() = [+ a) | 0], 3.50
Let
Vi(a(t)) = {z1(t) —In[1 4 2:()]} + {z2(t) — In[1 + 2,(¢)]} (3.51)

By ’
then from (3.49) and (3.50), we have

o) = 5 (25 + T4 0)
and after some algebraic operation similar to the proof of Theorem 3.1, it follows that
: L cx* 2 (1) zo(t) 21 (t)22(1) cr*23(t)
HED = e ap) el 0] B0 e )
B 2cx* 23 (t) N cx*23(t)
BA+a2) (L+a2[l+x0)P)  BA+a2[1+2()))
B cx* 23 (t) B cx* 23 (t)2o(1)
BA+a2) (L+a2[l+x0)P)  BA+z?1l+z()P)
B 22(t) Ttz (t)z1(t — 1)
w14 2 ()] 0K

@i+ a) o
: < B (14 z*2[1+ 2 (1)) w*[1+Z1(t)J> 1(t)z2(0)
¢ (Mr2e 2z M + z* 2(4)
+ﬁ ( L4m? (L +22)(1 + M?) " (1+x*2)(1+m2))zl(
_Z%(t) _ rz(t)z (t —7)

M oK

Suppose the following inequality » — ¢ max{1, M} L > 0 hold, then by Lemma 2.6, there
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exists a T > 0 such that m < z*[1 + 2,(¢t)] < M for t > T*. Since

ra)alt-1) 1 o, r ! :
SK = 5Kzl(t) + T 21(t)21(s)ds
r rMcr(M + 3z%) rMcex*T r’Mt\
< |\ ==+ + + (1)
K 26K (1 +m?) KB(1+x?)(14+m?)  20K?

+'r’Mc 2M + 3z* N 2(M + 2z*) /t 2(5)d
z1(s)as
2KB\ 14+m2  (1+a2)(1+m2)) ). "

Mc(M + 2x* Mot
41 oM + 2z )/ 3(s)ds + ———= - / 2i(s — 7)ds
t—T1

9K B(1 + m2) 20K
then we have
: cx*[1 4 z(t)] 1
e < (-5 2+ 0P 7+ ) 000
N ( 2cx* N (M + 2z%) N rMer(M + 3z%)
K B(L+a2)(1+M2) ' B(1+m?) 2K3(1 4 m?)
TMfo LT MT) 2(4)
BEK(1+22)(14+m2) 20K?

1 Mec (2M * 2(M + 2x* t
——23(t) + rae ( 3 + (M + 227) ))/ 22(s)ds
t—T1

M 2KB \ 14+ m? (I 4+ 2*2)(1 4+ m?
rMe(M + 2x*) r’M !
d —7)d 3.52
TR0+ mY) /t_T (>8+25K2/ ails = 7)ds (3:52)
Let
rMec (2M + 3x* 2(M + 2z
Va(2(t) = 2Kﬁ< T +(1+x*2 1+m2)/ /zl )dvyds
rMce(M + 2x*)
+2Kﬁl+m2 / /z2 dfyds+25K2/ /zl — 7)dyds(3.53)
and e
Vs(z(t :—/ z7(s)ds, 3.54
() = gz [0 (3.54)
then
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To(s(t)) = rMect <2M+3:E* 2(M + 2z7%) )) 2(p)

2K 1+m? (I+22)(14+m
rM (2M+3x* 2(M + 2x*) )/

KB\ 1+m2 (14 a2 1+m2 )

rMc(M + 2z*)T 2(p) rMc(M + 2x*) /
z
2K3(14+m2) 2 2K 3(1 + m?2)

QMT ) 7,2 /t )
+ t—7)— 2{(y — 7)dr. (3.55)
M- [ -

and 20f
: reMrt
Va(2(t)) = 232 2 (t) — BYYe)

Now we define a Lyapunov functional V' (z(t)) as

V(z(t)) = Vi(z(8)) + Va(2(1)) + Va(=(1)), (3.57)
then from (3.52), (3.55) and (3.56) it follows that for ¢ > T*

V(z(t) = Vi(z(t) + Va(=(t) + Va(=(2)),
< _ ( r 2cr* (M + 2z*) c(M + z¥)

2 (t—17). (3.56)

5K TR+ a1+ M) B+md)  Bl+a)(l+md)

3rMe(M + 2x*)T rMc(M + 3z*)T T2M7'> 5

2KB3(1+m?)  KBQ+a2)(1+m?) K2

a1+ =(1) 1 L (£)s
*( B0+ 22+ 20 *x*mzl(t)]) 1(H)z)

1 rMce(M +229)71Y
- <M ©2KB(1+m?) )Zz(t) 5%

By (3.58), there is € > 0 such that
V(=(1) < —e(2i(t) + 2 (1)) (3.59)

if and only if A > 0, C > 0 and B2 — 4AC < 0 where A and C' are defined by (3.46) and
(3.48), and

z (1)

B ta() !
6} (1 + 221+ 21 (8)]?)  a*[1 4 z1(t)]
for all possible trajectory (x*[1+4 21 (¢)], y*[1+22(¢)]). Since m < a*[142(¢)] < M for ¢t > T*,
cM 1 ar(l+a() 1 c__om 1
pA+m?) M~ f+a2[l+x0)P)  =*[l+=z@)]— pOA+M2) m
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and by define
cM 1

B — ma n cm n 1
—max{|—-———— + — |, |[————— + —| ;.
Batmy) M| TR+ T
Then the condition for V(z(t)) < 0 becomes
M2 *
(M + 22z )7_ _ Kp
1+m? re
r c (5+3x*?)(M + 2z*) + 2z~
— + — Mr
0K 26 B(l+22)(1 4 m?)

+KC’ M+2x*+ M + x* B 2x* - 1
pr \ 14+m?  (1+z)(1+m?) (14 2*2)(1+ M?) 5’
B? —4AC < 0,

where A, B and C' are given by (3.46)-(3.48).
Define w(s) = es?, then w is nonnegative continuous on [0, 00), w(0) = 0 and w(s) > 0
for s > 0. It follows that for ¢t > T

V(#(1) < —el2i(t) + 2 (8)] = —w(|=(t)]).

To find a function u such that V(z(t)) > u(|z(t)]), since the following relationship is still
hold for Holling’s Type III

1
V(z(t)) > Vi(z(t)) =
(2(t)) 2 Vi(=(t)) = 5=
and then by the same argument proposed in the proof of Theorem 3.1, we can establish that
this is a nonnegative continuous function u defined on [0, 00) with «(0) = 0, u(s) > 0 for
s >0 and lim u(s) = +oo and

S§—00

{21(t) = In[1 + 2 (8)] + 25(¢) — In[1 + 25 ()]} .

V(z(t)) > u(]z(t)|) for t > T™.

Hence the equilibrium point E* of the system (2.2) is globally asymptotically stable by
Lemma 2.3 O

4 Numerical Example

The following numerical example is used to illustrate the procedures of applying our results
to Leslie-Gower model without and with time delay. Consider the system

e(t) = ()3 —10z(t —7)] — p(x)y(t),

i = [1 - 6%] , (4.1
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with the initial conditions
xl(Q) = ZL‘l(O), 0 - [—T, O],

ZL‘1(0) > 0, ZL‘Q(O) > 0.

The corresponding parameter values are

r=3 K=03 c¢=15 6=1 [=6.

(4.2)

The unique positive equilibrium point E* = (a*,y*) for three-different types of Holling’s
functional response are listed below.

Table 1: The unique positive equilibrium point E* of the Leslie-Gower system (4.1) for three
types of Holling’s functional responses

| Holling’s functional response | p(z) | FE*=(a"y") |
Type I 152 (2—65, 2—15)
Typell 1511:5 G i)
Type 111 15~ fo ~ (0.2816, 0.0469)

When 7 = 0, i.e., the model without delay, the unique positive equilibrium point E* of
the system (4.1) is globally asymptotically stable by using the Lyapunov functional (3.23).
The corresponding trajectories of the system are depicted in Figure 1.

o Type | without delay o Type Il without delay o Type Ill without delay
0.09- 0.09- 0.09F
0.08F 0.08 0.08/
0.07H 0.071 0.07F
0.06/- 0.06- 0.06
£ 0.05] £ 005} £ 0.05f
0.04f 0.04F 0.04F
0.03f 0.031 0.03f
0.02F 0.021 0.021-
0.01- 0.01F 0.01F
% 005 01 015 02 02 05 035 04 % 005 01 015 02 025 03 03 04 00 005 01 015 02 02 03 035 04
X(t) x(t) X(t)
(a) Holling-Type I (b) Holling-Type II (c) Holling-Type IIT

Figure 1: The trajectories of the system (4.1) for three types of Holling’s functional responses
without delay
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Whenever 7 = 0.05, we obtain M = 0.34855, L = 0.05809, r — cmax{1, M }L = 2.12862,
and choose m = 0.19691. The corresponding sufficient conditions of Theorems 3.1-3.3 for
three different types of Holling’s functional responses are verified by the following table

Table 2: The parameters in the sufficient conditions of Theorems 3.1-3.3.

| Holling’s functional response | A | B | C [B?—AC |
Type I 8.0394 | 2.5784 | 2.6512 | —78.6074
Type II 6.8076 | 3.2246 | 2.6870 | —62.7711
Type 111 5.0054 | 4.6395 | 2.6778 | —32.0887

Consequently, by Theorems 3.1-3.3, we conclude that the unique positive equilibrium point
E* of the system (4.1) with initial conditions (4.2) is globally asymptotically stable. The
trajectories of the delayed system are depicted in Figure 2. But it is indistinguishable in the
phase portraits given by Figures 1 and 2 which correspond to non-delay and delay systems.
To observe the effect of time delay on dynamical behavior, we choose the system with Holling-
Type III functional response under initial conditions z(6) = 0.4 for § € [—7,0], x(0) = 0.4,
and y(0) = 0.05. Figure 3 shows the time history of the system trajectories for both cases
and the trajectories for the delay system is moving a very little higher and faster than those

of the non-delay one.

Type | delayt=0.05
0.1

0.09-
0.081
0.07p
0.06-
::: 0.051
0.041

0.031

0.021

0.01F

0 T n T
0 005 01 015 02 025 03 035 04
()

(a) Holling-Type I

0.1

0.09

0.08f

0.07F

0.06-

0.051

0.041

0.031

0.021

0.011

0

Type Il delay =0.05

Type Il delayw=0.05

0.1

0.09r

0.08F

0.061
< 0.05¢
=

0.041

0.031

0.021

0.011

X(t)

0 005 01 015 02 025 03 035 04

(b) Holling-Type II

0 N n T
0 005 01 015 02 025 03 035 04

(c) Holling-Type IIT

Figure 2: The trajectories of the system (4.1) for three types of Holling’s functional responses

with delay time 7 = 0.05
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0.36

0.341

solution x(t)
o
w
N

o
w

Trajectory for the Leslie-Gower system

nondelay
= = =1=0.05

time t

(a) z(t) vs. t

6 € [—7,0], z(0) = 0.4, and y(0) = 0.05

Based on the sufficient conditions of Theorems 3.1-3.3, it can be numerically verified that
the unique positive equilibrium point E* is globally asymptotically stable whenever the delay
time is less than the upper bound defined in Table 3. It is evident that the upper bound
on delay time of Holling-Type I from Theorem 3.1 is much larger than those provided by
Tsai’s paper [22| and Tsai’s paper can’t provide the information on the time-delay bounds

of Holling-Type II & III.

Table 3: The upper bound on delay time of the Leslie-Gower system (4.1) for three types of

Holling’s functional responses

solution y(t)

0.052

Trajectory for the Leslie-Gower system

0.051

0.05

0.0491

0.0481

0.047 1

nondelay
= = =1=0.05

time t

(b) y(t) vs. t

Figure 3: Comparison of time history of the trajectory of the system (4.1) for Holling-Type
IIT functional response with delay time 7 = 0.05 under initial conditions z(f) = 0.4 for

| Methods | Holling-Type I | Holling-Type II | Holling-Type III |
Present study 0.127607 0.105255 0.0767035
Tsai’s paper [22] 0.006333 - -
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